

<u>Acknowledgments</u>

- NASA Headquarters
 - Jack Kaye, Associate Director for ESD Research & Analysis
 - Tsengdar Lee, Weather and Atmospheric Dynamics Focus Area Lead
 - Will McCarty, Weather and Atmospheric Dynamics Focus Area Program Manager Scientist
 - Bruce Tagg, Director of NASA Airborne Science Program

2020

2025

MISSION COMPLETED

What we do in the Weather and Atmospheric Dynamics Focus Area

Flight (including Data Systems)

- Develops, launches, and operates NASA's fleet of Earth-observing satellites, instruments, and aircraft (GPM, CYGNSS)
 Future Missions: TROPICS, INCUS, AOS, PBL
- Community Smallsat Data Acquisition
- Open Science & Open-Source Science

Interagency and International Interfaces

- ICAMS
- JCSDA
- NOAA, ONR, DOE (ARM)
- ECMWF, ESA, JAXA, CNES
- CEOS, CGMS, GEO

Earth Science Technology Office

- Develops and demonstrates technologies (software and hardware) for future satellite and airborne missions:
 - InVEST, IIP, AIST

Research & Analysis

- Supports integrative research that advances knowledge of Earth system (6 focus areas)
- ROSES Research solicitations
- Modeling, Analysis, and Prediction (MAP)
 Program
- High-end Computing
- Field Campaigns: validation, process obs.

WADFA

Core Facility Assets

- MSFC/SPoRT
- GSFC/GMAO and NCCS
- Instrument Assets at LaRC, JPL

Applied Sciences

- SPoRT is heavily leveraged by the ASP's Disasters Area
- Exploring collaboration with ASP's Food Security and Agriculture Area
- Disaster Rapid Response
- ROSES and Flight funded activities

Research & Analysis: Active ROSES Research Solicitations

Register for an NSPIRES account to receive updates: <u>www.nspires.nasaprs.com</u> (or Google "NASA NSPIRES")

ROSES Year	Solicitation Short Title	#Yrs of \$
2021	Precipitation Measurement Missions Science Team (selections were announced January 2022)	3
2021	Increasing Participation of Minority Serving Institutions in Earth Science Division Surface-Based Measurement Networks (due March 16, 2022)	3
2021	Subseasonal-to-Seasonal Hydrometeorological Prediction (Due March 10, 2022)	3
2022	Interdisciplinary Research in Earth Science (NOIs due: Oct 14, 2022; Proposals due: Nov 16, 2022) - Subelement 4: Environmental and Climate Justice using Earth Observations - Subelement 6: Ocean worlds: Research at the Interface	3
2022	Earth Science Research from Operational Geostationary Satellite Systems (Expected 2022)	3
2022	Weather and Atmospheric Dynamics (Expected 2022)	3
Annual	FINESST (Graduate Student funding; up to 3 years funding solicited every year)	3
Ongoing	Rapid Response and Novel Research in Earth Science	1

NASA Airborne Science Program

NASA Modeling

- Models codify our understanding of the Earth system
- Model predictions provide useful information for research, management, and policy-making purposes
- Modeling groups at NASA Goddard, Marshall, and JPL

<u>2021 Convective Processes Experiment – Aerosols and Winds (CPEX-AW)</u>

7 total DC-8 flights between 20 August and 4 September from St. Croix

• 1: 20 Aug: SAL (near Hurricane Henri), Aeolus underflight

• 2: 21 Aug: SAL, Aeolus underflight, ITCZ, Caribbean island wakes

• **3**: 24 Aug: **Pre-Ida**, Aeolus underflight

• **4**: 26 Aug: **TS Ida**, Aeolus underflight

• 5: 28 Aug: TD10/Pre-Kate, SAL, Aeolus underflight

6: 1 Sept: TS Kate, "Aeolus underflight" (late)

• **7**: 4 Sept: **HU Larry**

Though no coordinated missions were flown, CPEX-AW collaborated with ESA and the Joint Aeolus Tropical Atlantic Campaign (JATAC)

2022 Convective Processes Experiment (CPEX-22) Field Campaign

Status Update

- Continuation of truncated 2021 CPEX-AW campaign
- Science traceability currently being re-assessed by the science team with the aim of complementing and supplementing CPEX-AW objectives
- Enhanced focus on extending the *roles of students and early career participants*
- Continue Aeolus Cal/Val based on the status of the satellite
- Location: Cabo Verde
- NASA's DC-8 will have ~100 hours flights
- Timeframe: 1– 30 September

Project Scientist: Jon Zawislak (U. of Miami/CIMAS)

Deputy Project Scientist: Ed Nowottnick (NASA/GSFC)

Lead Instrument Scientist: Amin Nehrir (NASA/LaRC)

HQ Program Managers: Hal Maring, Will McCarty,

Aaron Piña

Collaborations:

ONR TCRI / MAGPIE, APHEX, JATAC (Askos); NASA HIWC

Expected Instruments on NASA's DC-8 Aircraft:

- DAWN: (Doppler Aerosol WiNd lidar)
- HALO: (High Altitude Lidar Observatory)
- Dropsondes
- APR-3: (Airborne Precipitation & Cloud Radar 3rd Gen.)
- HAMSR: (High Altitude Monolithic Microwave integrated Circuit (MMIC) Sounding Radiometer)
- CAPS: (Cloud Aerosol and Precipitation Spectrometer)
- AIRO: (Aircraft In-situ and Radio Occultation)

Not on DC-8: Daily radiosonde launches from Cabo Verde

Science Objectives* and Targets

*don't yet have the final wording

Major scientific themes and targets organized by spatial scale of phenomena

What can CPEX-22 offer this group?

- In addition to the scientific benefits, assess the impact of measurements on model forecasts through assimilation of those measurements
 - We're flying in a data sparse region
 - Could include applying ensemble sensitivity targeting techniques in flight planning (ITOFS-East)
 - Prioritizing delivery of DC-8 dropsonde and Cabo Verde radiosonde data to the GTS
- Real-time assessment of Invests and potential tropical cyclone developments
 - Instrumentation "quick looks" are available to the CPEX-22 team, but could explore expanding that delivery to NHC
- Collaborative science missions with NOAA aircraft
 - Coinciding missions from Cabo Verde (DC-8 -- G-IV with ITOFS-East)
 - "Handshake" flights in the Central Atlantic (DC-8 -- NOAA P-3 and G-IV from Barbados / St. Croix)
 - NOAA flights "pick up" cases flown by DC-8 out of Cabo Verde

DC-8 Instrumentation and Measurables

DAWN: (Doppler Aerosol WiNd lidar)

- Wind speed
- Wind direction

DC-8 Instrumentation and Measurables

- DAWN: (Doppler Aerosol WiNd lidar)
- HALO: (High Altitude Lidar Observatory)

- Aerosols
- Water Vapor

DC-8 Instrumentation and Measurables

- DAWN: (Doppler Aerosol WiNd lidar)
- HALO: (High Altitude Lidar Observatory)
- Dropsondes

- Pressure
- Temperature
- RH
- Wind

DC-8 Instrumentation and Measurables

- DAWN: (Doppler Aerosol WiNd lidar)
- HALO: (High Altitude Lidar Observatory)
- Dropsondes
- APR-3: (Airborne Precipitation & Cloud Radar 3rd Gen.)

- Ku-, Ka-, W-band reflectivity
- Microphysics
- Vertical wind

DC-8 Instrumentation and Measurables

- DAWN: (Doppler Aerosol WiNd lidar)
- HALO: (High Altitude Lidar Observatory)
- Dropsondes
- APR-3: (Airborne Precipitation & Cloud Radar 3rd Gen.)
- HAMSR: (High Altitude Monolithic Microwave integrated Circuit (MMIC) Sounding Radiometer)

Vertical profiles and swath:

- RH / water vapor
- Temperature

DC-8 Instrumentation and Measurables

- DAWN: (Doppler Aerosol WiNd lidar)
- HALO: (High Altitude Lidar Observatory)
- Dropsondes
- APR-3: (Airborne Precipitation & Cloud Radar 3rd Gen.)
- HAMSR: (High Altitude Monolithic Microwave integrated Circuit (MMIC) Sounding Radiometer)
- CAPS: (Cloud Aerosol and Precipitation Spectrometer)
 - Cloud Imaging Probe (CIP), Cloud and Aerosol Spectrometer (CAS), Hotwire Liquid Water Probe
 - Cloud particles (5—1600 microns), cloud droplet and aerosol concentrations (0—0.5 microns)

DC-8 Instrumentation and Measurables

- DAWN: (Doppler Aerosol WiNd lidar)
- HALO: (High Altitude Lidar Observatory)
- Dropsondes
- APR-3: (Airborne Precipitation & Cloud Radar 3rd Gen.)
- HAMSR: (High Altitude Monolithic Microwave integrated Circuit (MMIC) Sounding Radiometer)
- CAPS: (Cloud Aerosol and Precipitation Spectrometer)
- AIRO: (Aircraft In-situ and Radio Occultation)
 - Refractivity, temperature, water vapor profiles